Functional Groups
groups<-read.csv(here("Data/species_groups.csv"))
trawl<-read.csv(here("Data/full_me_dmr_expcatch.csv"))
groups<-full_join(groups,trawl,by="COMMON_NAME")%>%
select(COMMON_NAME,SCIENTIFIC_NAME,functional_group)%>%
distinct()
trawl_data<-read.csv(here("Data/MaineDMR_Trawl_Survey_Catch_Data_2021-05-14.csv"))
trawl_3_groups<-left_join(trawl_data, groups, by="COMMON_NAME") #state of the ecosystem groups
trawl_3_groups$functional_group[trawl_3_groups$functional_group==""]<-"undefined"
trawl_3_groups$functional_group[is.na(trawl_3_groups$functional_group)]<-"undefined"
#cpue each year for weight and catch
cpue_year<-group_by(trawl_3_groups,Year,Season)%>%
mutate(tows=n_distinct(Tow_Number))%>%
group_by(functional_group,Year,Season)%>%
mutate(biomass=sum(Expanded_Weight_kg, na.rm = T),catch=sum(Expanded_Catch, na.rm=T))%>%
mutate(weight_percent=biomass/tows, catch_percent=catch/tows)%>%
group_by(Year,functional_group)%>%
summarise(weight_prop=mean(weight_percent),catch_prop=mean(catch_percent))
ggplot(cpue_year)+
geom_line(aes(x=Year, y=weight_prop, color=functional_group, group=functional_group), size=1)+
theme_classic()+
scale_color_colorblind()+
labs(x="Year", y="Biomass/ tow (kg)", color="Functional group")

#theme(text=element_text(size=14))
ggplot(cpue_year)+
geom_bar(aes(x=Year, y=weight_prop, fill=functional_group), position="fill", stat = "identity")+
scale_fill_colorblind(name="Functional Group")+
labs(x="Year", y="Proportion of Biomass/ tow (kg)", color="Functional group")

# theme(text=element_text(size=14))+
# theme(axis.text.y = element_text(colour = "black", size = 16, face = "bold"),
# axis.text.x = element_text(colour = "black", face = "bold", size = 16),
# legend.text = element_text(size = 16, face ="bold", colour ="black"),
# legend.position = "right", axis.title.y = element_text(face = "bold", size = 18),
# axis.title.x = element_text(face = "bold", size = 16, colour = "black"),
# legend.title = element_text(size = 18, colour = "black", face = "bold"),
# panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
# legend.key=element_blank())
ggplot(cpue_year)+
geom_line(aes(x=Year, y=weight_prop, color=functional_group, group=functional_group), size=1)+
theme_classic()+
scale_color_colorblind()+
labs(x="Year", y="biomass/ tow", color="Functional group")

#scale_x_discrete(labels =c(seq(2000,2017, by=1)))+
#theme(text=element_text(size=16))
Benthivore
####Each functional group####
benthivore<-filter(trawl_3_groups, functional_group=="benthivore")
cpue_benthivore<-group_by(benthivore,Year,Season)%>%
mutate(tows=n_distinct(Tow_Number))%>%
group_by(COMMON_NAME,Year,Season)%>%
mutate(biomass=sum(Expanded_Weight_kg, na.rm = T),catch=sum(Expanded_Catch, na.rm=T))%>%
mutate(weight_percent=biomass/tows, catch_percent=catch/tows)%>%
group_by(Year,COMMON_NAME)%>%
summarise(weight_prop=mean(weight_percent),catch_prop=mean(catch_percent))
ggplot(cpue_benthivore)+
geom_line(aes(x=Year, y=weight_prop, color=COMMON_NAME, group=COMMON_NAME), size=1)+
theme_classic()+
labs(x="Year", y="Biomass/ tow (kg)", color="Species")+
theme(text=element_text(size=14))

top10<-group_by(cpue_benthivore, COMMON_NAME)%>%
summarise(mean(weight_prop))
cpue_benthivore$COMMON_NAME[!cpue_benthivore$COMMON_NAME %in% c("lobster american","american plaice (dab)","flounder winter","haddock","crab jonah","flounder atlantic witch (grey sole)","flounder yellowtail","scup","skate barndoor")]<-"Other"
ggplot(cpue_benthivore)+
geom_bar(aes(x=Year, y=weight_prop, fill=COMMON_NAME), position="fill", stat = "identity")+
labs(x="Year", y="Proportion of Biomass/ tow (kg)", color="Species")+
scale_fill_colorblind()

# theme(text=element_text(size=14))+
# theme(axis.text.y = element_text(colour = "black", size = 16, face = "bold"),
# axis.text.x = element_text(colour = "black", face = "bold", size =16),
# legend.text = element_text(size = 16, face ="bold", colour ="black"),
# legend.position = "right", axis.title.y = element_text(face = "bold", size = 18),
# axis.title.x = element_text(face = "bold", size = 16, colour = "black"),
# legend.title = element_text(size = 18, colour = "black", face = "bold"),
# panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
# legend.key=element_blank())
Benthos
benthos<-filter(trawl_3_groups, functional_group=="benthos")
cpue_benthos<-group_by(benthos,Year,Season)%>%
mutate(tows=n_distinct(Tow_Number))%>%
group_by(COMMON_NAME,Year,Season)%>%
mutate(biomass=sum(Expanded_Weight_kg, na.rm = T),catch=sum(Expanded_Catch, na.rm=T))%>%
mutate(weight_percent=biomass/tows, catch_percent=catch/tows)%>%
group_by(Year,COMMON_NAME)%>%
summarise(weight_prop=mean(weight_percent),catch_prop=mean(catch_percent))
ggplot(cpue_benthos)+
geom_line(aes(x=Year, y=weight_prop, color=COMMON_NAME, group=COMMON_NAME), size=1)+
theme_classic()+
labs(x="Year", y="Biomass/ tow (kg)", color="Species")

#theme(text=element_text(size=20))
top10<-group_by(cpue_benthos, COMMON_NAME)%>%
summarise(mean(weight_prop))
ggplot(cpue_benthos)+
geom_bar(aes(x=Year, y=weight_prop, fill=COMMON_NAME), position="fill", stat = "identity")+
labs(x="Year", y="Proportion of Biomass/ tow (kg)", color="Species")+
scale_fill_colorblind()

# theme(text=element_text(size=14))+
# theme(axis.text.y = element_text(colour = "black", size = 16, face = "bold"),
# axis.text.x = element_text(colour = "black", face = "bold", size = 16),
# legend.text = element_text(size = 16, face ="bold", colour ="black"),
# legend.position = "right", axis.title.y = element_text(face = "bold", size = 18),
# axis.title.x = element_text(face = "bold", size = 16, colour = "black"),
# legend.title = element_text(size = 18, colour = "black", face = "bold"),
# panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
# legend.key=element_blank())
Piscivore
piscivore<-filter(trawl_3_groups, functional_group=="piscivore")
cpue_piscivore<-group_by(piscivore,Year,Season)%>%
mutate(tows=n_distinct(Tow_Number))%>%
group_by(COMMON_NAME,Year,Season)%>%
mutate(biomass=sum(Expanded_Weight_kg, na.rm = T),catch=sum(Expanded_Catch, na.rm=T))%>%
mutate(weight_percent=biomass/tows, catch_percent=catch/tows)%>%
group_by(Year,COMMON_NAME)%>%
summarise(weight_prop=mean(weight_percent),catch_prop=mean(catch_percent))
ggplot(cpue_piscivore)+
geom_line(aes(x=Year, y=weight_prop, color=COMMON_NAME, group=COMMON_NAME), size=1)+
theme_classic()+
labs(x="Year", y="Biomass/ tow (kg)", color="Species")

#theme(text=element_text(size=20))
top10<-group_by(cpue_piscivore, COMMON_NAME)%>%
summarise(sum(weight_prop))
cpue_piscivore$COMMON_NAME[!cpue_piscivore$COMMON_NAME %in% c("hake silver (whiting)","dogfish spiny","hake atlantic red","hake white","redfish acadian ocean perch","monkfish","squid short-finned")]<-"Other"
ggplot(cpue_piscivore)+
geom_bar(aes(x=Year, y=weight_prop, fill=COMMON_NAME), position="fill", stat = "identity")+
labs(x="Year", y="Proportion of Biomass/ tow (kg)", color="Species")+
scale_fill_colorblind()

# theme(text=element_text(size=14))+
# theme(axis.text.y = element_text(colour = "black", size = 16, face = "bold"),
# axis.text.x = element_text(colour = "black", face = "bold", size = 16),
# legend.text = element_text(size = 16, face ="bold", colour ="black"),
# legend.position = "right", axis.title.y = element_text(face = "bold", size = 18),
# axis.title.x = element_text(face = "bold", size = 16, colour = "black"),
# legend.title = element_text(size = 18, colour = "black", face = "bold"),
# panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
# legend.key=element_blank())
Planktivore
planktivore<-filter(trawl_3_groups, functional_group=="planktivore")
cpue_planktivore<-group_by(planktivore,Year,Season)%>%
mutate(tows=n_distinct(Tow_Number))%>%
group_by(COMMON_NAME,Year,Season)%>%
mutate(biomass=sum(Expanded_Weight_kg, na.rm = T),catch=sum(Expanded_Catch, na.rm=T))%>%
mutate(weight_percent=biomass/tows, catch_percent=catch/tows)%>%
group_by(Year,COMMON_NAME)%>%
summarise(weight_prop=mean(weight_percent),catch_prop=mean(catch_percent))
ggplot(cpue_planktivore)+
geom_line(aes(x=Year, y=weight_prop, color=COMMON_NAME, group=COMMON_NAME), size=1)+
theme_classic()+
labs(x="Year", y="Biomass/ tow (kg)", color="Species")

#theme(text=element_text(size=20))
top10<-group_by(cpue_planktivore, COMMON_NAME)%>%
summarise(sum(weight_prop))
cpue_planktivore$COMMON_NAME[!cpue_planktivore$COMMON_NAME %in% c("herring atlantic","alewife","sculpin longhorn","butterfish","mackerel atlantic","herring blueback","lumpfish")]<-"Other"
ggplot(cpue_planktivore)+
geom_bar(aes(x=Year, y=weight_prop, fill=COMMON_NAME), position="fill", stat = "identity")+
labs(x="Year", y="Proportion of Biomass/ tow (kg)", color="Species")+
scale_fill_colorblind()

# theme(text=element_text(size=14))+
# theme(axis.text.y = element_text(colour = "black", size = 16, face = "bold"),
# axis.text.x = element_text(colour = "black", face = "bold", size = 16),
# legend.text = element_text(size = 16, face ="bold", colour ="black"),
# legend.position = "right", axis.title.y = element_text(face = "bold", size = 18),
# axis.title.x = element_text(face = "bold", size = 16, colour = "black"),
# legend.title = element_text(size = 18, colour = "black", face = "bold"),
# panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
# legend.key=element_blank())
Undefined
undefined<-filter(trawl_3_groups, functional_group=="undefined")
cpue_undefined<-group_by(undefined,Year,Season)%>%
mutate(tows=n_distinct(Tow_Number))%>%
group_by(COMMON_NAME,Year,Season)%>%
mutate(biomass=sum(Expanded_Weight_kg, na.rm = T),catch=sum(Expanded_Catch, na.rm=T))%>%
mutate(weight_percent=biomass/tows, catch_percent=catch/tows)%>%
group_by(Year,COMMON_NAME)%>%
summarise(weight_prop=mean(weight_percent),catch_prop=mean(catch_percent))
paged_table(cpue_undefined)
top10<-group_by(cpue_undefined, COMMON_NAME)%>%
summarise(sum(weight_prop))
cpue_undefined$COMMON_NAME[!cpue_undefined$COMMON_NAME %in% c("monkfish","stars sea brittle baskets","smelt rainbow","crab atlantic rock","sturgeon atlantic","sea sponges", "waved astrate")]<-"Other"
ggplot(cpue_undefined)+
geom_bar(aes(x=Year, y=weight_prop, fill=COMMON_NAME), position="fill", stat = "identity")+
labs(x="Year", y="Proportion of Biomass/ tow (kg)", color="Species")+
scale_fill_colorblind()

# theme(text=element_text(size=14))+
# theme(axis.text.y = element_text(colour = "black", size = 16, face = "bold"),
# axis.text.x = element_text(colour = "black", face = "bold", size = 16),
# legend.text = element_text(size = 16, face ="bold", colour ="black"),
# legend.position = "right", axis.title.y = element_text(face = "bold", size = 18),
# axis.title.x = element_text(face = "bold", size = 16, colour = "black"),
# legend.title = element_text(size = 18, colour = "black", face = "bold"),
# panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
# legend.key=element_blank())
No shrimp
#no shrimp
no_shrimp<-filter(trawl_3_groups, functional_group=="undefined")%>%
filter(!COMMON_NAME %in% c("shrimp northern","shrimp montagui","shrimp","shrimp dichelo"))
cpue_no_shrimp<-group_by(no_shrimp,Year,Season)%>%
mutate(tows=n_distinct(Tow_Number))%>%
group_by(COMMON_NAME,Year,Season)%>%
mutate(biomass=sum(Expanded_Weight_kg, na.rm = T),catch=sum(Expanded_Catch, na.rm=T))%>%
mutate(weight_percent=biomass/tows, catch_percent=catch/tows)%>%
group_by(Year,COMMON_NAME)%>%
summarise(weight_prop=mean(weight_percent),catch_prop=mean(catch_percent))
cpue_no_shrimp$COMMON_NAME[!cpue_no_shrimp$COMMON_NAME %in% c("monkfish","stars sea brittle baskets","smelt rainbow","crab atlantic rock","sturgeon atlantic","sea sponges", "waved astrate")]<-"Other"
ggplot(cpue_no_shrimp)+
geom_bar(aes(x=Year, y=weight_prop, fill=COMMON_NAME), position="fill", stat = "identity")+
labs(x="Year", y="Proportion of Biomass/ tow (kg)", color="Species")+
scale_fill_colorblind()

# theme(text=element_text(size=14))+
# theme(axis.text.y = element_text(colour = "black", size = 16, face = "bold"),
# axis.text.x = element_text(colour = "black", face = "bold", size = 16),
# legend.text = element_text(size = 16, face ="bold", colour ="black"),
# legend.position = "right", axis.title.y = element_text(face = "bold", size = 18),
# axis.title.x = element_text(face = "bold", size = 16, colour = "black"),
# legend.title = element_text(size = 18, colour = "black", face = "bold"),
# panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
# legend.key=element_blank())